(3+4x^2)/5=3

Simple and best practice solution for (3+4x^2)/5=3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (3+4x^2)/5=3 equation:



(3+4x^2)/5=3
We move all terms to the left:
(3+4x^2)/5-(3)=0
We multiply all the terms by the denominator
(3+4x^2)-3*5=0
We add all the numbers together, and all the variables
(3+4x^2)-15=0
We get rid of parentheses
4x^2+3-15=0
We add all the numbers together, and all the variables
4x^2-12=0
a = 4; b = 0; c = -12;
Δ = b2-4ac
Δ = 02-4·4·(-12)
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{3}}{2*4}=\frac{0-8\sqrt{3}}{8} =-\frac{8\sqrt{3}}{8} =-\sqrt{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{3}}{2*4}=\frac{0+8\sqrt{3}}{8} =\frac{8\sqrt{3}}{8} =\sqrt{3} $

See similar equations:

| (x=9)/2=3x | | -3(4x+9)+2=15 | | 1+1.2(7x+10)=4.1−(−8.6x−1) | | 4k+-3k-6k=20 | | 8x-6=12+11x | | 2(n-3)=-44 | | 5(-2x-2)-2x-4=1 | | -1=x/19 | | 3x+2+5x=8x+8-6 | | (x-31)+(x-31)+42=180 | | X+2+4=2x+2 | | -6x-7-8=15* | | x+5+3x−1+4x=180 | | 1/3(12x19)=13 | | 2a+29=5+8a | | 7x-7-6x-16=1 | | –3p=–48 | | a6=7*6-2 | | 13.25x=530 | | -3m=-4m+6 | | 5m-5+7m-7=180 | | 2n-8n=-12-8n | | 15+4n=8-(13-9n) | | 9n+10=-10+7n | | 1+1.2(7x+10)=1+1.2(7x+10)=4.1-(-8.6x-1)4.1−(−8.6x−1) | | (4x-15)=(4x+3) | | -3=q/1+-5 | | 8y+32-2y+1=70-3y | | a(6)=7*6-2 | | -9-6b=-5b | | 8x/3-7=9 | | 3x+2=x+-1 |

Equations solver categories